Mark schemes

Q1.

Alternative method 1

$$
\begin{gathered}
180 \div(5+7) \text { or } 180 \div 12 \text { or } 15 \\
\text { oe }
\end{gathered}
$$

$5 \times$ their 15
 or $180-7 \times$ their 15 or 75

oe

180 - their $75-20$
or 180 - 95
oe

85

Alternative method 2
$x+\frac{7 x}{5}=180$
or $\frac{5 y}{7}+y=180$ or $y=105$
oe correct elimination of a variable from equations $x+y=$ 180 and $7 x=5 y$

$$
\begin{gathered}
(x=) 180 \times \frac{5}{12} \text { or }(x=) 75 \\
o e
\end{gathered}
$$

180 - their $75-20$
or 180 - 95
oe

85

Q2.
$X Y Z=110$ stated or shown or $B X Z=30$ stated or shown
$A B X$ and $X Z B=80$
$X Y Z=110$ stated or shown and $B X Z=30$ stated or shown
40°
Must be from correct work
Answer only B1

B1

Alternative Method

$B Z Y=110$ stated or shown or $B X Z=30$ stated or shown
$B X Y=70$ stated or shown and $B X Z=30$ stated or shown
40°
Must be from correct work
Answer only B1

Q3.
angle $A B C=x$
angle $B A C=x$ and
alternate segment theorem
angle $A B C=x$ and
angle $B A C=x$ and
alternate segment theorem and two equal angles so isosceles ($A C=B C$)

Q4.
(a) 35
(b) 100

Angle at centre twice angle on circumference
Must use words 'centre' and 'circumference' (or 'perimeter')
Allow poor spelling even though both words given oe (strand) (i)

B1

B1
$2 x+y+20=180$
or
$x+2 y+y+40=180$
or
$2 x+y+20=x+2 y+y+40$
or
$2 x+y+20+x+2 y+y+40=360$
oe
Another of these equations
$2 x+y+20=180$
or
$x+2 y+y+40=180$
or
$2 x+y+20=x+2 y+y+40$
or
$2 x+y+20+x+2 y+y+40=360$
oe
these simplify to ...
$2 x+y=160$ or
$x+3 y=140$ or
$x-2 y=20$ or
$3 x+4 y=300$
equating coefficients and elimination of x or y for their equations
e.g.
$x+3 y=140$ and $6 x+3 y=480$
or
$2 x+6 y=280$ and $2 x+y=160$
rearrangement and substitution for their equations
e.g.
$y=160-2 x$ and $x+3(160-2 x)=140$
or
$x=140-3 y$ and $2(140-3 y)+y=160$
Allow one numerical error for the 3rd M1, but not an error in method (e.g. adding equations when they ought to be subtracted is an error in method, so MO)

```
\(5 x=340\) or \(5 y=120\)
ft their elimination or substitution
```

$x=68$ and $y=24$

Q6.

Alternate segment (theorem)
B1dep

Additional Guidance

65 alternative segment (theorem)

65 alternate angles

Q7.
Angle $C A D=46$ or
Angle $A C D=37$ or
Angle CDE $=83$ or $(37+46)$ or
Angle $A D C=97$ or 180-(37+46)
Any of these angles correctly marked or named ... could be on diagram

$$
\text { Angle } D C E=46 \text { or }
$$

Angle $A C E=83$ or $(37+46)$

51

Q8.
Alternative method 1

$$
x+y+70=180
$$

or $x+2 y+40=180$
oe

```
\(x+y=110\)
and \(x+2 y=140\)
\(2 x+2 y=220\)
and \(x+2 y=140\)
oe
Collects terms and equates coefficients
Equations may be implied from 110 or 140 on diagram in correct place
```

$$
x=80 \text { or } y=30
$$

$x=80$ and $y=30$

Alternative method 2

$$
\begin{aligned}
& x+y+70=180 \\
& \text { or } x+y+70+x+2 y+40=360
\end{aligned}
$$

oe

```
\(2 x+2 y=220\)
and \(2 x+3 y=250\)
\(3 x+3 y=330\)
and \(2 x+3 y=250\)
                    oe
                    Collects terms and equates coefficients
                    Equations may be implied from 110 or 140 on diagram in
                    correct place
```

$x=80$ or $y=30$
$x=80$ and $y=30$

Alternative method 3

$x+2 y+40=180$
or $x+y+70+x+2 y+40=360$
oe
$2 x+4 y=280$
and $2 x+3 y=250$
$3 x+6 y=420$
and $4 x+6 y=500$
oe
Collects terms and equates coefficients
Equations may be implied from 110 or 140 on diagram in correct place
$x=80$ or $y=30$
$x=80$ and $y=30$

Alternative method 4

$$
\begin{array}{r}
x+y+70=180 \\
\text { or } x+2 y+40=180 \\
\text { oe }
\end{array}
$$

$$
\begin{aligned}
& 2 y+40-(y+70)=0 \\
& \text { or } 2 x+140-(x+40)=360-180 \\
& \text { oe } \\
& \quad \text { Eliminates a variable }
\end{aligned}
$$

$x=80$ or $y=30$
$x=80$ and $y=30$

Additional Guidance

$y=30$ must come from correct equations not from $x+2 y=70$ and $x+y=40$

Q9.
Join BD
Angle $B D C=2 x$
Alternate segment theorem

Angle $B D O=x$

Angle $D B O=x$
Isosceles triangle $B O D$

Angle $B O D=180-2 x$
Angle sum of triangle BOD
$y=360-90-90-(180-2 x)$
$y=2 x$
Angle sum of quadrilateral $A B O D$
$y=2 x$ clearly shown from simplification

Must have at least two different reasons stated in the proof

Alternative method 1

Angle $O B C=90-2 x$
Tangent-radius property

Angle OCB $=90-2 x$
Isosceles $\triangle O B C$

Angle $O C D=x$
Isosceles $\triangle O C D$

```
Angle \(B C D=90-2 x+x\)
\[
=90-x
\]
```

hence

Angle $B O D=180-2 x$
Angle at centre $=2 \times$ angle at circumference
$y=360-90-90-(180-2 x)$
$y=2 x$
Angle sum of quadrilateral $A B O D$
$y=2 x$ clearly shown from simplification

Must have at least two different reasons stated in the proof

Alternative method 2

Angle $O B C=90-2 x$
Tangent-radius property

Angle $O C B=90-2 x$
Isosceles $\triangle O B C$

Angle $O C D=x$
Isosceles $\triangle O C D$

Angle $B C D=90-2 x+x$

$$
=90-x
$$

hence

Angle $B O D=180-2 x$
Angle at centre $=2 \times$ angle at circumference

Angle $B O D=360-90-90-y$

$$
=180-y
$$

hence $y=2 x$

Angle sum of quadrilateral $A B O D$
$y=2 x$ clearly shown from simplification

Must have at least two different reasons stated in the proof

Alternative method 3

Angle $O B C=90-2 x$
Tangent-radius property

$$
\text { Angle } O C B=90-2 x
$$

Isosceles $\triangle O B C$

Angle $O C D=x$

Isosceles $\triangle O C D$

$$
\text { Angle } \begin{aligned}
B C D & =90-2 x+x \\
& =90-x
\end{aligned}
$$

```
\(y=360-90-(90-2 x)-(90-x)-x-90\)
hence \(y=2 x\)
```

Angle sum of quadrilateral $A B C D$
$y=2 x$ clearly shown from simplification

Must have at least two different reasons stated in the proof

Alternative method 4

Angle $B O D=180-y$
Angle sum of quadrilateral $A B O D$

Angle $O C D=x$
Isosceles $\triangle O C D$

Angle $O B C=90-2 x$
Tangent-radius property

Angle $B C O=90-2 x$
hence
Angle $B O D$ reflex $=360-(90-2 x)-(90-2 x)-x-x=180+2 x$
Isosceles $\triangle O B C$
Angle sum of quadrilateral $B O D C$
... this can also come from Angle BOC (4x) + Angle DOC (180-2x)
$180-y+180+2 x=360$
hence $y=2 x$
Angles round a point
$y=2 x$ clearly shown from rearranging

Must have at least two different reasons stated in the proof

Q10.
(a) 70

May be on diagram
(Opposite angles of) cyclic quadrilateral (add up to 180°)
Dependent on 70
In a quadrilateral in a circle the opposite angles add up to 180°
(b) One correct angle
$D A E=70$ or $B A D=25$ or $D B C=70$
Angles can ft from their 70 in (a)

Two correct angles
$D A E=70$ or $B A D=25$ or $D B C=70$ or $A D E=40$

Three correct angles
$D A E=70$ or $B A D=25$ or $D B C=70$ or $A D E=40$ or $B D C=$ 95 or $B A E=95$

15

Q11.

90 seen or implied
90 may be on diagram
or may implied by use of Pythagoras or trigonometry
$8.3^{2}+5.2^{2}$
$\sin 32 .(067 \ldots)$ or $\cos 57 .(9326 \ldots)=\frac{5.2}{O B}$
or $\cos 32 .(067 \ldots)$ or $\sin 57 .(9326 \ldots)=\frac{8.3}{O B}$
$\sqrt{8.3^{2}+5.2^{2}}$

$$
\begin{aligned}
& \frac{5.2}{\sin 32 .(067 . .)} \text { or } \frac{5.2}{\cos 57 .(9326 . .)} \\
& \frac{8.3}{\text { or }^{\cos 32 .(067 . .)}} \text { or } \frac{8.3}{\sin 57 .(9326 \ldots)}
\end{aligned}
$$

$9.79 \ldots$ or 9.8
Accept 10 if working seen

Q12.
$A D$

Q13.
43

Alternate segment (theorem)
Strand (i) Do not accept Alternate
Dependent on B1
Q1

Q14.
(a) 70
(b) $A D E=34$
or $A E D=180-70$ or 110
or $A D C=180-70-34$ or 76
Angles seen on diagram must be in correct place
$A D E=34$
and $A E D=180-70$ or 110

36

Q15.
(a) 56
(b) 70

Alternate segment (theorem)
Strand (i)
Dependent on B1
Q1dep
(c) 2×47 or 94
or Angle BOA $=47$
or Angle BOC $=47$
or Angle BAC $=47$
or Angle BCA = 47
May be on diagram (obtuse angle)

90 or right angle symbol seen at A or
C
or 180-90-47
or $(180-2 \times 47) \div 2$
oe

43

Q16.
(a) 64

Alternate segment (theorem)
(b) 97

Q17.
Alternative method 1
$B D C=24$
May be on the diagram
$D F C=\frac{180-24}{2}$
or $D C F=\frac{180-24}{2}$
or $\frac{156}{2}$ or 78
May be on the diagram
Finding a base angle in triangle CDF

```
(3x =) 180 - their 78
or (3x =) 24 + their 78
or (3x=) 102
```

oe
May be on the diagram

34
May be on the diagram

Alternative method 2

$B D C=24$
May be on the diagram
$D F C=180-3 x$
May be on the diagram
$2(180-3 x)+24=180$ or $360-6 x+24=180$
or $3 x+78=180$ or $(3 x=) 102$
oe
M1dep
34
May be on the diagram

Additional Guidance

If angles in the same segment are not used i.e. all the working is using triangle $A B F$ then award maximum of 2 marks

If triangle $A B F$ is assumed to be isosceles and there is no evidence of angle $B D C=24$ being used then award maximum of 2 marks

If triangle $A B F$ is used as isosceles and correctly justified then all marks are available e.g. 'triangle $A B F$ is similar to triangle CDF'

Answer of 34 does not imply full marks
Answer of 34 with no working
'their 78' must come from an attempt to calculate $\frac{180-24}{2}$
Angles must be clearly identified e.g. $D=24$

24 (unless shown on diagram)

