Q1.

G (1	1.		
	Alternative method 1		
	180 ÷ (5 + 7) or 180 ÷ 12 or 15		
	oe		M1
			IVII
	5 × their 15		
	or 180 – 7 × their 15 or 75		
	UE		M1dep
	180 – their 75 – 20		
	or 180 – 95		
	oe		
			Mldep
	85		4.1
			AI
	Alternative method 2		
	$x + \frac{7x}{5} = 180$		
	$\frac{5y}{7} + y = 180 \text{ or } y = 105$		
	y = 100 or $y = 100$	ination of a variable from equations $x + y =$	
	180 and 7 <i>x</i> = 5	5y	
			M1
	5		
	(x=) 180 × 12 or $(x=)$ 75		
	oe		M1dep
	180 - their 75 - 20		
	or $180 - 95$		
	or loc co		
			M1dep
	85		
			A1
ດ2	2.		
	 XYZ = 110 stated or shown or <i>l</i>	BXZ = 30 stated or shown	
	ABX and XZB =	= 80	
			B1

[4]

	40°			
			Must be from correct work Answer only B1	
	Alter	native Meth	nod	
	BZY	= 110 stated	d or shown or <i>BXZ</i> = 30 stated or shown	
	BXY = 70 stated or shown and $BXZ = 30$ stated or shown			
	40°		Must be from correct work Answer only B1	
Q3	-			
	angle	e ABC = x		M1
	angle alterr	e BAC = x ai nate segmer	nd ht theorem	M1
	angle	ABC = x and $ABC = x$ and	nd	
	alterr	ate segmer	nt theorem and two equal angles so isosceles (<i>AC = BC</i>)	A1
04				
~ .	(a)	35		
	(b)	100		
		Angle at ce	entre twice angle on circumference Must use words 'centre' and 'circumference' (or 'perimeter') Allow poor spelling even though both words given oe (strand) (i)	

XYZ = 110 stated or shown and BXZ = 30 stated or shown

[3]

B1

B1

B1

B1

B1

[3]

[3]

B1

B1

Q1

Q5.

Any **one** of these equations

2x + y + 20 = 180or x + 2y + y + 40 = 180or 2x + y + 20 = x + 2y + y + 40or 2x + y + 20 + x + 2y + y + 40 = 360oe

Another of these equations

2x + y + 20 = 180or x + 2y + y + 40 = 180or 2x + y + 20 = x + 2y + y + 40or 2x + y + 20 + x + 2y + y + 40 = 360oe these simplify to ... 2x + y = 160 orx + 3y = 140 orx - 2y = 20 or3x + 4y = 300

equating coefficients and elimination of x or y for their equations

e.g. x + 3y = 140 and 6x + 3y = 480or 2x + 6y = 280 and 2x + y = 160rearrangement and substitution for their equations e.g. y = 160 - 2x and x + 3(160 - 2x) = 140or x = 140 - 3y and 2(140 - 3y) + y = 160M1dep

Allow one numerical error for the 3rd M1, but not an error in method (e.g. adding equations when they ought to be subtracted is an error in method, so M0)

5x = 340 or 5y = 120*ft their elimination or substitution*

x = 68 and *y* = 24

Q6.

M1dep

A1

[5]

M1

M1

	65		
	Alternate segment (theorem)	B1dep	
	Additional Guidance		
	65 alternative segment (theorem)	B1 B0	
	65 alternate angles	B1 B0	[2]
07	,		
QI	Angle $CAD = 46$ or		
	Angle ACD = 37 or		
	Angle <i>CDE</i> = 83 or (37 + 46) or		
	Angle ADC = 97 or 180 – (37 + 46) Any of these angles correctly marked or named could be		
	on diagram	M1	
	Angle <i>DCE</i> = 46 or		
	Angle <i>ACE</i> = 83 or (37 + 46)	M1	
	51	A1	[3]
			[2]

Q8.

Alternative method 1

x + y + 70 = 180 or x + 2y + 40 = 7	180 oe	M1
x + y = 110 and $x + 2y = 140$		
2x + 2y = 220 and $x + 2y = 140$		
	oe	
	Collects terms and equates coefficients	
	Equations may be implied from 110 or 140 on diagram in correct place	

M1dep

x = 80 or y = 30	A1
<i>x</i> = 80 and <i>y</i> = 30	A1
Alternative method 2	
x + y + 70 = 180 or $x + y + 70 + x + 2y + 40 = 360$ oe	M1
2x + 2y = 220 and $2x + 3y = 250$	
3x + 3y = 330 and $2x + 3y = 250$	
oe Collects terms and equates coefficients	
Equations may be implied from 110 or 140 on diagram in correct place	
	M1dep
x = 80 or y = 30	A1
x = 80 and y = 30	A1
Alternative method 3	
x + 2y + 40 = 180 or $x + y + 70 + x + 2y + 40 = 360$	
oe	M1
2x + 4y = 280 and $2x + 3y = 250$	
3x + 6y = 420 and $4x + 6y = 500$	
Collects terms and equates coefficients	
Equations may be implied from 110 or 140 on diagram in correct place	M1dep
<i>x</i> = 80 or <i>y</i> = 30	A 1
r = 80 and $v = 30$	AI
	A1

Alternative method 4

	<i>x</i> + <i>y</i> + 70 = 180 or <i>x</i> + 2 <i>y</i> + 40 =	180 oe	M1
	2y + 40 - (y + 70) or $2x + 140 - (x + 10)$	(0) = 0 + 40) = 360 - 180	
		oe Eliminates a variable	M1dep
	<i>x</i> = 80 or <i>y</i> = 30		A1
	<i>x</i> = 80 and <i>y</i> = 30	0	A1
	Additional Guid	ance	
	<i>y</i> = 30 must com	e from correct equations not from $x + 2y = 70$ and $x + y = 40$	M0 M0 A0
Q9	Join <i>BD</i>		
	Angle $BDC = 2x$	Alternate segment theorem	M1
	Angle <i>BDO</i> = <i>x</i>		M1
	Angle <i>DBO</i> = <i>x</i>	Isosceles triangle BOD	M1
	Angle <i>BOD</i> = 18	0 – 2 <i>x</i> Angle sum of triangle BOD	M1
	<i>y</i> = 360 - 90 - 90	0 - (180 - 2x)	1411
	y = 2x		
		Angle sum of quadrilateral ABOD	
		y = 2x clearly shown from simplification	A1
	Must have at lea	st two different reasons stated in the proof	B1ft

Alternative method 1

[4]

Angle OBC = 90	-2x	
	Tangent-radius property	M1
Angle OCB = 90	-2x	
	Isosceles ∆ OBC	M1
Angle $OCD = x$		
5	Isosceles Δ OCD	M1
Angle <i>BCD</i> = 90	-2x + x	
= 90 ·	-x	
nence		
Angle <i>BOD</i> = 180	0 - 2x	
	Angle at centre = 2 × angle at circumference	M1
<i>y</i> = 360 - 90 - 90	0 - (180 - 2x)	
y = 2x		
	Angle sum of quadrilateral ABOD	
	y = 2x clearly shown from simplification	4.1
Must have at leas	st two different reasons stated in the proof	AI B1ft
.		DIII
Alternative metric	nod 2 – 2r	
	Tangent-radius property	
		M1
Angle OCB = 90	-2x	
	Isosceles Δ OBC	M1
Angle $OCD = x$		
	Isosceles Δ OCD	M1
Angle BCD = 90	-2x + x	
= 90	- x	
nence		
Angle BOD = 180	0-2x	
	Angle at centre = 2 × angle at circumference	M1
Angle BOD = 360	0 - 90 - 90 - <i>v</i>	
= 180	D-y	
hence $y = 2x$		

	Angle sum of quadrilateral ABOD	
	y = 2x clearly shown from simplification	A1
Must have at leas	st two different reasons stated in the proof	B1ft
Alternative metl Angle OBC = 90	nod 3 – 2x	
	Tangent-radius property	M1
Angle OCB = 90	-2x Isosceles A OBC	
		M1
Angle $OCD = x$	Isosceles Δ OCD	M1
Angle <i>BCD</i> = 90	-2x + x	
= 90	- <i>x</i>	M1
y = 360 - 90 - (9) hence $y = 2x$	90 - 2x) - (90 - x) - x - 90	
	Angle sum of quadrilateral ABCD	
	y = 2x clearly shown from simplification	A1
Must have at leas	st two different reasons stated in the proof	B1ft
Alternative meth Angle <i>BOD</i> = 180	nod 4) – <i>y</i>	
-	Angle sum of quadrilateral ABOD	M1
Angle $OCD = x$	Isosceles Δ OCD	
Apple $OBC = 00$	- 9r	M1
	Tangent-radius property	M1
Angle <i>BCO</i> = 90	-2x	
hence Angle <i>BOD</i> reflex	e x = 360 - (90 - 2x) - (90 - 2x) - x - x = 180 + 2x Isosceles Δ OBC Angle sum of quadrilateral BODC this can also come from Angle BOC (4x) + Angle DOC (180 - 2x)	

	180 · henc	- y + 180 + ; e y = 2x	2 <i>x</i> = 360		
		2	Angles round a point		
			y = 2x clearly shown from rearranging	A1	
	Must	have at lea	st two different reasons stated in the proof	B1ft	
Q1	0.				
	(a)	70	May be on diagram		B1
		(Opposite a	angles of) cyclic quadrilateral (add up to 180°) <i>Dependent on 70</i>		
			In a quadrilateral in a circle the opposite angles add up to 180°		Q1
	(b)	One corre	ct angle DAE = 70 or BAD = 25 or DBC = 70		
			Angles can ft from their 70 in (a)		M1
		Two correc	t angles		
			DAE = 70 or BAD = 25 or DBC = 70 or ADE = 40		M1
		Three corre	ect angles DAE = 70 or BAD = 25 or DBC = 70 or ADE = 40 or BDC =		
		15	95 01 BAE - 95		A1
		10			A1
Q1	1.				
	90 se	een or implie	ed		
			90 may be on diagram		
			or may implied by use of Pythagoras or trigonometry		M1

8.3² + 5.2²

sin 32.(067...) or cos 57.(9326...) =
$$\frac{5.2}{OB}$$

or cos 32.(067...) or sin 57.(9326...) = $\frac{8.3}{OB}$

M1

M1

[6]

[6]

$$\sqrt{8.3^2 + 5.2^2}$$

5.2	5.2	
sin 32.(067)	cos57.(9326)	
8.3	8.3	
or ^{cos 32.(067)}	sin 57.(9326)	

			Mldep	
	9.79	or 9.8 Accept 10 if working seen	A1	[4]
Q 1	l 2. AD		B1	[1]
Q1	1 3. 43 Alter	nate segment (theorem)	B1	
		Strand (i) Do not accept Alternate Dependent on B1	Q1	[2]
Q1	l 4. (a)	70	B1	
	(b)	<i>ADE</i> = 34		
		or <i>AED</i> = 180 – 70 or 110		
		or ADC = 180 – 70 – 34 or 76 Angles seen on diagram must be in correct place	M1	
		<i>ADE</i> = 34		
		and <i>AED</i> = 180 – 70 or 110	M1dep	
		36	A1	[4]

Q15.

(a) 56

B1

(b) 70

		Alternate segment (theorem) <i>Strand (i)</i>	
		Dependent on B1	Q1dep
	(c)	2 × 47 or 94	
		or Angle BOA = 47	
		or Angle BOC = 47	
		or Angle BAC = 47	
		or Angle BCA = 47 May be on diagram (obtuse angle)	M1
		90 or right angle symbol seen at A or	
		C	
		or 180 – 90 – 47	
		or (180 – 2 × 47) ÷ 2	
		oe	M1
		43	4.1
			AI
01	6		
Q I	o. (a)	64	DI
		Alternate segment (theorem)	BI
			B1
	(b)	97	B1
Q1	7. Alter	native method 1	
	BDC	= 24	
		May be on the diagram	B1
	050	180 – 24	

[6]

[3]

or $DCF = \frac{180 - 2}{2}$	24	
or $\frac{156}{2}$ or 78		
	May be on the diagram	
	Finding a base angle in triangle CDF B1dep	
3x = 180 - their 78		
or $(3x =) 102$		
χ γ	oe	
	May be on the diagram M1	
34		
	May be on the diagram	
Alternative method 2		
<i>BDC</i> = 24		
	May be on the diagram B1	
DFC = 180 - 3x		
	May be on the diagram M1	
2(180 – 3 <i>x</i>) + 24	= $180 \text{ or } 360 - 6x + 24 = 180$	
or 3 <i>x</i> + 78 = 180	3x + 78 = 180 or (3x =) 102	
	oe	
	M1dep	
34		
	May be on the diagram A1	
Additional Guidance		
If angles in the same segment are not used i.e. all the working is using triangle <i>ABF</i> then award maximum of 2 marks		
If triangle ARE is assumed to be isoscolor and there is no ovidence of angle $PDC = 24$		

If triangle ABF is assumed to be isosceles and there is no evidence of angle BDC = 24 being used then award maximum of 2 marks

If triangle *ABF* is used as isosceles and correctly justified then all marks are available e.g. 'triangle *ABF* is similar to triangle *CDF* '

Answer of 34 does not imply full marks

Answer of 34 with no working

B0B0M1A1

80 - 24

'their 78' must come from an attempt to calculate 2

Angles must be clearly identified e.g. D = 24

24 (unless shown on diagram)

B1

B0

[4]